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INTRO

Acquired immunodeficiency syndrome, AIDS, is a widespread virus that is highly prevalent in
today’s society. Understanding its effects is extremely important for public health officials in regards to
planning resources towards prevention research, disease control, and public assistance. While no cure
exists, many treatments are being tested in an attempt to slow the disease’s progress or nullify its effects.

The experiment was a randomized, double-blind study of AIDS patients with advanced immune
suppression, that corresponds to CD4 counts of less than or equal to 50 cells/mm’.

1309 patients were randomized to be administered four different daily treatments of medication called
Zidovudine. The four treatments are as follows:

Treatment 1: zidovudine alternating monthly with 400mg didanosine
Treatment 2: zidovudine plus 2.25mg of zalcitabine

Treatment 3: zidovudine plus 400mg of didanosine

Treatment 4: zidovudine plus 400mg of didanosine plus 400mg of nevirapine

The variables of interest are listed below:
log_CD4: log transformed CD4 counts (log(CD4 + 1))
Week: time since baseline (weeks)
Age: age of subject (years)
Gender: male and female

Our goal is to compare the effect of treatment types on the changes in both log transformed CD4
and CD4 counts over time.



EXPLORATORY DATA ANALYSIS

Univariate Summary (Numerical/Graphical)
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Given that the patients in this trial were
randomized to one of four different treatments,
we should expect to see very similar boxplots for
the log(CD4) count at week zero. We are unable
to plot log(CD4) at different week times as
measurement times are inconsistent and not
uniform.

Patients’ ages range anywhere from 15 to 75
years old. However, 95% of the data is
concentrated on patients between 25 and 55 years
old. The patients’ ages seem to follow a normal
distribution.
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We notice that the proportion of
male to females is about the same across all
4 treatments, however, because the overall
number of males is so much larger than
those of females, the variable “gender”
could possibly not be statistically significant
in our models. We will later test this.
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Bivariate Summary (Numerical/Graphical)

During the exploratory process, it is good to visualize how the response variable (in this case the
log(CD4) changes over time for different levels of treatments. We used a smoothing method to plot the
mean of log(CD4) over time.

Scatterplot of Log CD4 Over Time
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As we can see, although the data is well-scattered throughout the 40-week study, there seem to be
different effects among the treatments. Treatments 1, 2, and 3 seem to have negative relationships with
log(CD4) over time. Additionally, we note that the mean for treatments 1, 2, and 3 are lower at the end of
the 40-week period compared to week 0. We will later test these ideas once the model has been created.
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Given the plots above, it is hard to say that gender and age will be good predictors of a patient’s
CD4 count because there is no strong evident trend in the data. However, output summaries in addition to
statistical tests of the model will be a better indicator of the significance of the variable than the graphs
above.

Imbalances/Outliers

It is important to note that not all patients have the same number of measurements. Number of
measurements per subject ranged from 1 to 8. Additionally, measurement times are not uniform—i.e. The
subjects were not all recorded at the same time or at the same intervals.

No outliers were found in the dataset. We will review this during our residual analysis with
Mabhalanobis Distance.



MODEL BUILDING

We begin with a full linear mixed effects model of:

Log(CD4) ~ Age + Gender + Week + AgeTrt + GenderTrt + WeekTrt + b,

(Note that we do not include the main effect of treatment as the experiment is randomized)

The summary output is listed and states that a majority of our covariates are significant. However,
the main effects of age and gender may not be significant. Following the output, we will test their

significance.
Linear mixed-effects model fit by maximum likelihood
Data: aids
ATIC BIC loglik

12179.98 12277.85 -6@74.99

Random effects:
Formula: ~1 | 1d

(Intercept) Residual
StdDev: @.8687348 @.6189748

Fixed effects: log_cd4 ~ age + gender + week + age:treatment + gender:treatment + week :treatment
Value 5td.Error DF t-value p-value
(Intercept) 2.6469689 @.13452961 3723 19.675734 0.0000
age 9.0032706 0.00439097 1300 O.744848 B.4565
gendermale @.2405657 @.15373339 1300 1.564824 8.1179
week -0.0163963 0.00148935 3723 -11.089049 O.0000
age:treatmentZ @.8127064 ©.80511963 1300 2.3842Z8 0.0173
age:treatment3 9.8074441 @.00496402 1300 1.499613 0.1340
age:treatmentd 9.8132074 0.00498103 1300 Z2.651550 0.0081
gendermale:treatment? -@.4872267 @.20968015 1300 -2.323666 0.02083
gendermale:treatment3 -9.3080930 0.20286136 13800 -1.518737 ©0.1291
gendermale:treatment4 -9.5544853 @.20435319 13800 -Z2.713368 0.0067
week: treatmentZ 9.0020909 0.00209107 3743 0.999931 0.3174
week: treatment3 9.0077320 0.00209889 3723 3.445631 0.0066
week: treatment4d @.8152579 0.80206701 3723  7.381631 0.0000
Correlation:
(Intr) age gndrml week  ag:trZ ag:tr3 ag:tr4 gndr:2 gndr:3 gndr:4 wk:itrZ wk:tr3
age -8.561
gendermale -@.258 -9.599
week -0.843 -0.852 -0.840
age:treatment2 -9.064 -9.551 @.647 0.068
age:treatment3 -9.840 -9.583 0.661 9.069 0.522
age:treatmentd -0.028 -0.588 ©.655 ©.068 0.520 @.535
gendermale:treatmentZ ©@.8672 ©.584 -0.700 ©.035 -0.918 -8.479 -8.477
gendermale:treatment3 9.030 @.540 -0.715 ©.038 -0.480 -9.913 -0.492 0.520
gendermale:treatmentd ©.826 ©.539 -0.789 ©.037 -0.476 -9.490 -6.915 ©.516 ©.533
week: treatmentZ 9.8003 ©.852 0.9836 -90.711 -0.102 -9.048 -0.048 -0.044 -0.028 -0.027
week: treatment3 9.811 ©.948 ©@.933 -0.709 -0.847 -0.098 -0.048 -0.626 -0.054 -0.827 @.504
week: treatment4d 9.002 ©0.050 @.934 -0.720 -0.048 -9.049 -0.10Z -0.826 -0.028 -0.848 ©.512 0.510

Stondardized Within-Group Residuals:
Min 01 Med Q3 Max
-4, 21488756 -@.449064434 ©.03257531 ©.52259661 3.74765834

Number of Observations: 5836
Number of Groups: 13@9




All of the following models are linear mixed models, with a random effect on slope. We compare
the linear “full” model with the three “reduced” models that exclude the main effect of age, gender
individually, in addition to excluding the main effects of age and gender together.

We compare them using an “ML” method and a combination of Akaike’s Information Criterion
and Likelihood Ratio Test, when appropriate.

model linear Log(CD4) ~ Age + Gender + Week + AgeTrt + GenderTrt + WeekT rt
model at Log(CDA4) ~ Gender + Week + AgeTrt + GenderTrt + WeekTrt
model gt Log(CD4) ~ Age + Week + AgeTrt + GenderTrt + WeekTrt

model w Log(CD4) ~ Week + AgeTrt + GenderTrt + WeekTrt

An ANOVA test comparing the models is listed below:

Model df ATC BIC Loglik  Test L.Ratic p-value
model_linear 1 15 12179.98 12Z77.84 -6@74.99@
model_at 2 18 12181.11 12298.55 -6@72.557 1 vs 2 4.B666Z3 ©.1E818
model_gt 3 15 12179.98 12277 .84 -6@74.999 Z vs 3 4.8666Z3 ©.1E818
model_w 4 15 12179.98 12277 .84 -6@74.990

Interestingly, the AIC and log-likelihood tests seem to contradict each other in their conclusions.
AIC judges that model linear, model gt, and model w are the same and are better than model at while
the LRT deems model_at the best. For continuity and simplicity, we will continue with the full model as
we continue to add more covariates. We will also revisit the significance of age as a main effect.



Nonlinear Relationship of Log(CD4) over Time

The smoothed graph of log(CD4) over time suggests that a piecewise or quadratic model may be
preferred over a linear model. The different models are as follows:

Scatterplot of Log CD4 Over Time Piecewise:

3.25 1 Y ~ Age + Gender + Week
+ (Week — 10) + AgeTrt
+ GenderTrt + WeekTrt

Piecewise (with interaction):
3.001 Y ~ Age + Gender + Week
+ (Week — 10) + AgeTrt

+ GenderTrt + WeekTrt
factor(treatment)
. + (Week — 10)Trt
by 1
Q —_2
82751 — 3 Quadratic:
— 4 Y ~ Age + Gender + Week
+ Week® + AgeTrt
+ GenderTrt + WeekTrt
2.50 1

Quadratic (with interaction):
Y ~ Age + Gender + Week
+ Week® + AgeTrt

+ GenderTrt + WeekTrt
- + Week®Trt
0 10 20 30 40
Week
An ANOVA test on these different models gives the output:
Model df AIC BIC  loglik Test L.Ratio p-value

model_linear 1 15 12179.98 12277 .84 -6074.990

model_pilecewlise 2 16 12134. 480 122738.79 -6@51.198 1 vs 2 47.58283 <.8801
model_piecewised 319 12116.87 12240.03 -6@39.033 2 vs 3 24.33159 «.0001
model_guad 4 16 12135.83 12249.22 -6@51.914 3 vs 4 25.76301 <.0001
model_guad? 519 12117.99 172736.95 -6@37.496 4 vs 5 Z8.83591 «.8601

As the full model is nested within the piecewise and quadratic models, we can compare using
log-likelihood. The comparison of all the models’ log-likelihoods dictates that the piecewise (with
interaction) and quadratic (with interaction) are the best two models.

lOngkpiecewiseZ > lOngkpiecewise2 > lOngklinear

lOgLikquad2 > lOgLikquad > lOgLiklinear
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Since the quadratic or piecewise are not nested within the other, we can compare them using
Akaike’s Information Criterion, or AIC. As AIC,,,» < AIC

the better of the two.

we conclude that model quad2 is

qua piecewise2 >

Random Effects

Now we consider different random effects. For the sake of processing power and model
simplicity, we will only consider 2 random effects per model: intercept and a main effect. The different
models are as follows:

model quad a Y, =B +PAge; + ... + Bl6Weekarti +by; +b;Age; + g
model_quad_g Y =B +PAge; + ... + B Week Trt, + b,; + b, ;Gender; + ¢
model quad 2 Y =B +PAge; + ... + [316Week?Trti +by; +b;Week; + ¢,
model_quad_w2 Y =B +PAge; + ... + B Week Trt, + b, + b, Week: +¢,

An ANOVA test comparing the models gives the output:

Model df ATC BIC LlogLik  Test L.Ratio p-value
model_quad? 119 12117.99 12736.95 -6@37.496
model_quad_a 2 21 12116.99 12254.8@ -6837.496 1 vs 2 3.385518e-06 1
model_quad_g 3 21 12116.14 12253.15 -6837.07@
model _quad_w 4 21 11972.91 12189.92 -5965.456
model_quad_wZ 5 21 12838.84 172175.85 -5998.020

Using AIC, we conclude that model quad_w, the model with a random effect on the intercept and
week, is our preferred model.

Alcweek < Alcweek2 < AICquadZ < AICgender < Alcaé’e



Chosen Model

Our chosen model is as follows:

Y, =By + BAge; + P, Gender,; + B, Week; + [:’)4Weekf +PBsAgel(Trt, =2) + PcAge,[(Trt; =3)
+PB,Agel(Trt; = 4) + BgGender (Trt; = 2) + ByGender (Trt; = 3) + B, Gender (Trt; = 4)

+ P, Week(Trt; =2) + B,Week(Trt; = 3) + B3 Week,(Trt; = 4)
+ B Week:(Trt, = 2) + P s Week (Trt, = 3) + B, Week (Trt, = 4)

Linear mixed-effects model fit by maximum likelihood
Data: aids
AIC BIC loglik
11972.91 121@89.92 -5965.456

Random effects:
Formula: ~1 + week | id

StdDev Corr
(Intercept) @.79732503 (Intr)
week ?.01616463 0.18
Residual B.57291889

Fixed effects:
gender:treatment +
Value 5Std.Error DF

Structure: General positive-definite, Log-Cholesky parametrization

log_cd4 ~ age + gender + week + week_sq + adge:treatment +
weelk:treatment + week_sq:treatment
t-value p-value

(Intercept) 2.587@575 0.13070790 3719 19.792664 ©.0000
age ©.0035263 ©.00426237 1300 ©.827311 ©.4082
gendermale ©.2813344 ©.14935445 1300 1.883669 ©.0398
week -@.9129637 0.004608255 3719 -2.816634 ©.0049
week_sq -0.0001160 0.00012806 3719 -@.905548 ©.3652
age:treatmentz ©.0122895 0.00497231 1308 2.471589 ©.0136
age:treatment3 ©.0067780 ©.00480933 1300 1.489345 ©.1590
age:treatment4 ©.0105521 ©.00483930 1300 Z2.150493 ©.0294
gendermale:treatmentZ -@.5115665 @.20377835 1300 -Z2.510406 ©.0122
gendermale:treatment3 -8.3274957 0.19667274 1380 -1.665181 ©.0961
gendermale: treatment4 -8.5641849 @.19859419 1300 -Z2.840893 0.0046
week:treatmentZ ©.0066045 ©.00645272 3719 1.023527 ©.3061
week:treatment3 ©.8199835 ©.00646825 3719 3.08947Z2 ©.0020
week: treatment4 @.0464006 ©.00639605 3719 7.263959 O.0000
week_sq:treatment? -0.8001275 0.00017819 3719 -8.715576 ©.4743
week_sq:treatment3 -0.0004855 0.00018026 3719 -2.249517 ©0.0245
week_sq:treatment4 -9.0008991 0.80017681 3719 -5.084894 O.0000

Y, =2.587+0.004Age; + 0.281Gender, — 0.013Week; — 0.000IWeek? +0.012AgeI(Trt,

+0.007AgeI(Trt, = 3) +0.011Age,/(Trt, = 4) — 0.512Gender I(Trt, = 2)

—0.327Gender I(Trt; = 3) — 0.564Gender I(Trt; = 4) + 0.007Week I(Trt; = 2)

+0.020WeekI(Trt; = 3) +0.046Week,I(Trt; = 4) — 0.000IWeek?I(Trt,. =2)

—0.0004W eek: [(Trt, = 3) — 0.0009W eek: I(Trt, = 4) + by; + b,

Revisiting age as a main effect, we find that the two models have the same AIC and

log-likelihood. As neither model has less degrees of freedom, they explain the same amount of variation.

We will continue with model quad2 for continuity.

Model df ATC BIC

loglLik

model_quadZ
model_guadZ_no_age

119 12112.99 12236.95 -6@37.49%
2 19 12112.99 12236.95 -6@37.496

2)
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Predictions/Comparisons of LME Model

The model predicts that:

Going from Treatment 1 (Zidovudine alternating monthly with 400mg Didanosine) to Treatment
2 (Zidovudine plus 2.25mg of Zalcitabine), we expect a change in log(CD4) of
BsAge; + BsGender, + B, Week, + ,,Week, . For a 35-year old male at week 10, we’d expect a change
in log(CD4) of -0.032 (or a change of -0.031 in the count of CD4), or in other words, a decrease in the
count of CD4.

Going from Treatment 1 (Zidovudine alternating monthly with 400mg Didanosine) to Treatment
3 (Zidovudine plus 400mg of Didanosine), we expect a change in log(CD4) of
BsAge; + BoGender, + B, Week, + s Week; . For a 35-year old male at week 10, we’d expect a change
in log(CD4) of 0.078 (or a change of 0.08 in the count of CD4), or in other words, an increase in the
count of CD4.

Going from Treatment 1 (Zidovudine alternating monthly with 400mg Didanosine) to Treatment
4 (Zidovudine plus 2.400mg of Didanosine plus 400mg of Nevirapine), we expect a change in log(CD4)
of B,Age; + P,oGender, + s Week, + B, Week: . For a 35-year old male at week 10, we’d expect a
change in log(CD4) of 0.191 (or a change of 0.21 in the count of CD4), or in other words, an increase in
the count of CDA4.

We can also compare our model with the log(CD4) values as observed. We will choose subjects
with IDs 469 and 1172.

ID Week Fitted Observed Fitted - Observed
469 (Trt =1, 0 3.5847 2.8622 0.7225
43.47 y.o male)
8.42 3.5232 4.6250 -1.1018
24.43 3.3610 3.3322 0.0288
32.29 3.2596 3.1780 0.0816
1172 (Trt =4, 0 3.2125 2.0794 1.1331
23.01 y.o. male)
8.14 3.5574 4.2767 -0.7193
17 3.7797 4.2627 -0.483

33.43 3.7705 3.9318 -0.1613




RESIDUAL ANALYSIS

We begin with the standardization of our residuals using Cholesky’s decomposition.

Histogram of Untransformed Residuals

Histogram of Transformed Residuals

Histogram of Untransformed Residuals
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Visually, we can see that the transformed residuals follow an approximately normal distribution.

QQ Plot

We use the QQ Plot to analyze the normality assumption and visually identify outliers.

Below is the output:

254

0.0

Quantiles of Transformed Residuals

-2.51

0 2
Quantiles of Standard Normal

We can see that the tails depart from the straight line, thus the assumption of normality is not met.
Possible justifications of this departure are: large expected residuals at baseline because of variability
between individuals, and that we can expect large residuals due to this being a random experiment.
Despite these ideas, we must look at the other residual graphs to make a definite conclusion.



Mahalanobis Distance

We identify outlying individuals based on their Mahalanobis Distance in which the outliers will
have small associated p-values under significance level (&) = 0.05. We expect to have 252 outliers

(expected outliers = a * number of observations).

=N
—+

id data

178
692
1118
1207
1193
371
877
1100
626
1117

Lo @ RO unownownowen

39.
35.
33.
31.
28.
20.
29.
21.
26.
26.

o

[l = W < T = El S o S
[ e i e e T e Y e i e e

p_value

. 000000174
. 00000136
. 00000310
. 00000896
. 0000117

. 0000377

By the table row count we can see that we have 133 outliers, which is less than the number

expected. We can attribute these outliers to random chance.

Residuals ~ Predicted Time
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Next, we will analyze the constant variance assumption for the data. We transform time, and plot

it against the transformed residuals. If correctly specified, the range of the transformed residuals should

be constant over transformed time.
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The scatterplot suggests that the points seem to fluctuate around 0, and we can see that the
smooth line follows 0 almost perfectly through transformed time. This is indicative of the adequacy of the
constant variance assumption in the data and solidifies our belief that a quadratic term is needed in our
model.

Absolute Transformed Residuals ~ Transformed Predicted Values

We plot the absolute transformed residuals vs the transformed predicted values to check the
constant variance assumption for our chosen model. If the variance is adequate, no systematic trend will
be visible on the graph. If assumed to be normally distributed (with mean 0 and variance 1), the fitted
curve should be centered at approximately 0.8.

Absolute Transformed Residual

-1 0 1 2 3
Transformed Predicted Value

As we can see from the output, the points fluctuate around 0.8 quite well. With no systematic
departures from 0.8, we can conclude that the residuals in our model follow a normal distribution with
mean 0 and variance 1.



Absolute Transformed Residuals ~ Transformed Time

Similarly, we plot absolute transformed residuals against transformed time to double-check our

conclusions from the previous plot.

Absolute Transformed Residual

20 30 40
Transformed Time

Again, we can see our points fluctuate around 0.8 well and the smoothed line is also
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approximately 0.8. This solidifies our conclusion from the previous graphs that the variance assumption is

met and that the residuals are approximately normal.

Semi-Variogram

We will use the semi-variogram to assess the adequacy of the covariance in our selected model. If we
have chosen the correctly specified model, the observation should fluctuate around the horizontal line

centered at 1.

Variogram with span = 0.3

Variogram
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The variogram fluctuates around 1 randomly, indicating that covariance (and variance and

correlation) is adequate for the model.

In summary, the residual analysis supports our specified model. There are no systematic errors in

our model or changes needed.



GLME MODEL

Scatterplot of CD4 Over Time
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To preface, we were unable to get the model to converge when including the main effect of gender, in
addition to the interaction effects of age:treatment and gender:treatment. Additionally, note that we use
CD4 count as our response variable (in contrast to log(CD4) in the LME model) through the following
transformation: CD4 = round(exp(log(CD4)) - 1). As such, the GLME model looks like:

CD4 = B, + B, Age; + P,Week, + B Week: + B, Week I(Trt = 2) + PsWeek I(Trt = 3)

+ B Week I(Trt = 4) + B, Week I(Trt = 2) + BgWeek; I(Trt = 3) + BoWeek, I(Trt = 4)
+ by, + b ;Week;

17
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The GLME summary is below:

Generalized linear mixed medel fit by maximum likelihood
(Adaptive Gauss-Hermite Quadrature, nAGQ = @) [glmerMod]
Family: poisson ( log )
Formula:
count_cd4 ~ age + week + week_sg + week:treatment + week_sq:treatment +
(1 + week | id)
Data: aids

AIC BIC loglik deviance df.resid
52619.4 D5Z704.2 -Z6296.7 5Z393.4 5023

scaled residuals:
Min 10  Median 3Q Max
-19.8319 -1.0094 -0.08EE @.8061 18.3662

Random effects:

Groups Name Variance 5Std.Dev. Corr
id (Intercept) ©@.8683465 @.93185
week ©.08@93395 @.93865 -8.15

Number of obs: 5036, groups: 1id, 13@9

Fixed effects:
Estimate 5td. Error z wvalue Pr(=|zl)

(Intercept) 2.546e+00 1.Z228e-01 2@.725 < Ze-1f ***
age 9.890e-03 3.174e-83 3.115 ©.00184 **
week 4.,904e-03 Z2.5Z1e-83 1.945 ©9.05178 .
week_sq -7.753e-04 5.394e-85 -14.373 < Ze-1f ***
week:treatmentZ2 5.743e-03 3.484e-03 1.648 ©.09929
week:treatment3 2.714e-02 3.423e-03 7.929 Z.Ze-15 ***
week : treatment4 4.027e-02 3.364e-83 13.757 < Ze-1G ***
week_sqg:treatmentZ -8.539e-05 7.Z222e-85 -1.182 ©.23704
week_sqg:treatment3 -7.194e-84 6.966e-85 -10.326 < Ze-1f ***
week_sg:treatment4 -8.959e-04 6.719e-85 -13.334 < Ze-1b ***
Signif. codes: @ ‘***' @.081 ‘**’ 8.01 ‘** ©.05 *." ©8.1 * ' 1

We wish to test the two hypotheses H,, : B, =P5 =P, =0 and H, : B; =Pg = By = 0. The former tests
whether different treatments have differing effects over time. The latter tests whether the rate of change of
the treatments change over time. We can use a Wald Test on both hypotheses. For the former, we find a
test statistic = 121.3127 and a p-value = 4.024577¢-26 < 0.05 = alpha. We reject the null and conclude
that there is sufficient evidence for the alternative. The treatments have differing effects over time. For the
latter, we find a test statistic = 593.125 and a p-value = 3.11733e-128 < 0.05 = alpha. We reject the null
and conclude that there is sufficient evidence for the alternative. The rates of change of treatments differ
over time.

Individually, we can test the hypotheses H,, : 3, =0and H, : B, # 0 fori=4,5, 6. As the p-values equal
0.09, 2.2e-15, and 2.2¢-16, we fail to reject the null for 3, , however reject the null for 5 and f,
respectively at a = 0.05 . We conclude that the interaction between Treatment 2 and week is not
statistically significant, however the interaction between Treatment 3 and week in addition to Treatment 4
and week is statistically significant. Treatments 3 and 4 have statistically non zero effects on CD4 count
over time.



Predictions/Comparisons of GLME Model

The model predicts that:
Going from Treatment 1 (Zidovudine alternating monthly with 400mg Didanosine) to Treatment

2 (Zidovudine plus 2.25mg of Zalcitabine), we expect a change in CD4 of 3, Week; + [37Week? .Fora
35-year old male at week 10, we’d expect a change in CD4 of 0.049.
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Going from Treatment 1 (Zidovudine alternating monthly with 400mg Didanosine) to Treatment
3 (Zidovudine plus 400mg of Didanosine), we expect a change in CD4 of ;W eek; + BgWeekf .Fora

35-year old male at week 10, we’d expect a change in CD4 of 0.199.

Going from Treatment 1 (Zidovudine alternating monthly with 400mg Didanosine) to Treatment
4 (Zidovudine plus 2.400mg of Didanosine plus 400mg of Nevirapine), we expect a change in log(CD4)
of BoWeek; + [39Weekf . For a 35-year old male at week 10, we’d expect a change in CD4 of 0.37311.

We can also compare our model with the observed CD4 values. We choose subjects with IDs 2 and 149.

ID Week Fitted Observed Fitted - Observed
2 (Trt=4,47.84 0 28.10 20 8.10
y.0. male)
8.00 39.26 48 -8.74
16.00 44.29 52 -7.71
23.00 41.30 36 53
30.71 31.63 27 4.63
39.00 19.03 21 -1.97
149 (Trt =3, 0 14.26 16 -1.74
28.44 y.o female)
8.00 16.11 12 4.11
15.86 15.08 18 -2.92
25.57 10.76 10 0.76
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CONCLUSION

Both our chosen Linear Mixed Effects model and our General Linear Mixed Effects model
provide useful information in interpreting the effect of the treatment type over time. In the LME model,
we predicted the response, log(CD4), over time using the main effects of Age, Gender, Week and Week®.
We found that going from treatment 1 (reference) to treatment 3, and from treatment 1 (reference) to
treatment 4 provided an increase in log(CD4) counts, indicating that the treatments had a significant
positive effect.

Using the General Linear Mixed Effects Model, we conclude the treatments have differing effects
in CD4 over time and the rates of change of CD4 also differ over time. Furthermore, we also came to the
conclusion that the interaction term between week and treatments 3 and 4 individually are statistically
significant, meaning that holding everything else constant, treatments 3 and 4 have a significant
difference to the reference group (treatment 1) in the change of CD4 over time.

AIDS patients with advanced immunosuppression hoping to increase their CD4 count can have
the assurance that the daily regimen of zidovudine plus 400mg of didanosine or a daily regimen if
zidovudine plus 400mg of nevirapine, namely treatments 3 and 4, is predicted to have a net positive effect
on their CD4 count.



